99 票 COIL INDICATION AND MODULE PROTECTION FACIUTIES

- LED module: to indicate presence of voltage across coil
- DIO DE module: to protect coil from back EM F
- LED + DIO DE module: to indicate presence of voltage across coil and protect coil from back EM F
- LED + varistor module: to indicate presence of voltage across coil and protect coil from back EM F
- RC circuit module

99.01						99.80
DIO DE M O DULE	FUNCTIONS	OPERATING RANGE	CODE	CODE	CODE	CODE
	Recovery diode modules are used for DC only. The negative cutoff voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A1). The drop-out time increases by an approximate factor of 3 . If an increase of the drop-out time is not wanted use a Varistor or RC module.	6-220 V DC	9901.3000 .00	9944.3000.00	9973.3000 .00	9980.3000.00
DIO DE IN VERTED PO LARITY						
	Recovery diode modules are used for DC only. The negative cut-off voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A2). The drop-out time increases by an approximate factor of 3 . If an increase of the drop-out time is not wanted use a Varistor or RC module.	6-220 V DC	9901.2000 .00	9944.2000.00	-	-
LED M O DULE						
	LED modules are used for $A C$ and $D C$. The LED indicator lights up when the coil is energized. W hen using DC it is essential that positive is connected to terminal A1.	$\begin{aligned} & 6-24 \mathrm{~V} D C / A C \\ & 28-60 \mathrm{VDC} / \mathrm{AC} \\ & 110-230 \mathrm{~V} D C / A C \end{aligned}$	$\begin{aligned} & 9901.0024 .59 \\ & 9901.0060 .59 \\ & 9901.0230 .59 \end{aligned}$	$\begin{aligned} & 9944.0024 .59 \\ & 9944.0060 .59 \\ & 9944.0230 .59 \end{aligned}$	$\begin{aligned} & 9973.0024 .59 \\ & 9973.0060 .59 \\ & 9973.0230 .59 \end{aligned}$	$\begin{aligned} & 9980.0024 .59 \\ & 9980.0060 .59 \\ & 9980.0230 .59 \end{aligned}$
DIO DE M O DULE + LED						
	Recovery diode modules + LED are for DC only. The negative cut-off voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A1). The drop-out time increases by an approximate factor of 3 . If an increase of the drop-out time is not wanted use a Varistor or RC module. The LED indicator lights up when the coil is energized.	$\begin{aligned} & 6-24 \mathrm{~V} D C \\ & 28-60 \mathrm{VDC} \\ & 110-220 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 9901.9024 .99 \\ & 9901.9060 .99 \\ & 9901.9220 .99 \end{aligned}$	$\begin{aligned} & 9944.9024 .99 \\ & 9944.9060 .99 \\ & 9944.9220 .99 \end{aligned}$	$\begin{aligned} & 9973.9024 .99 \\ & 9973.9060 .99 \\ & 9973.9220 .99 \end{aligned}$	$\begin{aligned} & 9980.9024 .99 \\ & 9980.9060 .99 \\ & 9980.9220 .99 \end{aligned}$
DIO DE M O DULE + LED IN VERTED PO LARITY						
	Recovery diode modules + LED are for DC only. The negative cut-off voltage peaks of the coil are short circuited by the recovery diode (positive to terminal A2). The drop-out time increases by an approximate factor of 3 . If an increase of the drop-out time is not wanted use a Varistor or RC module. The LED indicator lights up when the coil is energized.	6-24 V DC 28-60 V DC 110-220VDC	$\begin{aligned} & 9901.9024 .79 \\ & 9901.9060 .79 \\ & 9901.9220 .79 \end{aligned}$	$\begin{aligned} & 9944.9024 .79 \\ & 9944.9060 .79 \\ & 9944.9220 .79 \end{aligned}$	-	-
LED M O DULE + VARISTOR						
	LED modules + Varistor are used for both AC and DC coils. The cut-off voltage peaks of the relay coil are limited by the Varistor to approximately 2.5 times the nominal voltage of the module. W hen using DC coils it is essential that positive is connected to terminal A1. The relay drop-out time increases only insignificantly.	$\begin{aligned} & 6-24 \mathrm{~V} \mathrm{AC/DC} \\ & 28-60 \mathrm{VAC} / \mathrm{DC} \\ & 110-230 \mathrm{VAC} / \mathrm{DC} \end{aligned}$	$\begin{aligned} & 9901.0024 .98 \\ & 9901.0060 .98 \\ & 9901.0230 .98 \end{aligned}$	$\begin{aligned} & 9944.0024 .98 \\ & 9944.0060 .98 \\ & 9944.0230 .98 \end{aligned}$	$\begin{aligned} & 9973.0024 .98 \\ & 9973.0060 .98 \\ & 9973.0230 .98 \end{aligned}$	$\begin{aligned} & 9980.0024 .98 \\ & 9980.0060 .98 \\ & 9980.0230 .98 \end{aligned}$
RC MODULE						
	Rc circuit modules are used for AC and DC coils. The cut-off voltage peaks of the relay are limited by the RC module to approximately 2.5 times the nominal voltage of the modules. The relay drop-out time increases only insignificantly.	6-24 V AC/DC 28-60 V AC/DC 110-230 V AC/ DC	$\begin{aligned} & 9901.0024 .09 \\ & 9901.0060 .09 \\ & 9901.0230 .09 \end{aligned}$	$\begin{aligned} & 9944.0024 .09 \\ & 9944.0060 .09 \\ & 9944.0230 .09 \end{aligned}$	$\begin{aligned} & 9973.0024 .09 \\ & 9973.0060 .09 \\ & 9973.0230 .09 \end{aligned}$	$\begin{aligned} & 9980.0024 .09 \\ & 9980.0060 .09 \\ & 9980.0230 .09 \end{aligned}$
REM AN EN CE						
	Bypass modules are advisable, if the relay coils do not drop-out between 110-240 V AC. Failure to drop-out can be caused by residual currents from AC proximity switches or inductance couplings caused through long parallel lying AC control lines.	110-230 V AC	9901.8230 .07	9944.8230 .07	9973.8230 .07	9980.8230 .07

